Toward a Field Study on the Impact of Hacking
Competitions on Secure Development

Daniel Votipka and Michelle L. Mazurek

University of Maryland
dvotipka,mmazurek@cs.umd.edu

ABSTRACT

The ability to find and fix vulnerabilities is critical to pro-
ducing secure software. Previous research has shown that
the main difference between experts who specialize in finding
security flaws and general software practitioners (i.e., devel-
opers and testers) is that experts have been exposed to more
security issues. To bridge this experience gap, computer se-
curity competitions, called Capture-the-Flags (CTF), have
been carried out both in the academic and corporate setting.
Using a mixed-methods approach, we examine in a field set-
ting whether CTF competitions improve participants’ abil-
ity to identify security weaknesses and write more secure
code. Our initial results indicate that CTFs have a positive
effect on security thinking, encourage communication with
the security team, and reduce overconfidence in participants’
ability handle complex security problems.

1. INTRODUCTION

Secure development is the cornerstone of cybersecurity: If
developers fail to correctly implement a security protocol,
all guarantees provided by the protocol are void. Even if an
organization correctly establishes its network defenses, all
their effort is wasted if their software is vulnerable.

Significant advances have been made in the automation of
vulnerability discovery tasks, but human intelligence is still
required to identify the most complex flaws |3H5l|14}/21} 25|
27,1291|130]. Because of this, companies often rely on mul-
tiple levels of code review to manually identify vulnerabil-
ities; this can include review within the development team
for a given component, review by a dedicated security team,
and even hiring outside experts (e.g., penetration testing,
bug bounties) to examine code. Within-team developers
typically know the targeted code well and are well posi-
tioned to fix any identified vulnerabilities, but may lack se-
curity expertise [16}/23]. Security teams, in contrast, must
concern themselves with all areas of a codebase, meaning
they may not have time to review everything, or may not
understand some nuances of a particular segment [23}24].
In addition, the later in the process that a vulnerability
is identified, the more difficult and expensive it can be to
fix [7,/181/22k28}311[35].

This situation suggests that it is critical to arm develop-
ers with the ability to identify and fix vulnerabilities — or
better, avoid them in the first place. One commonly sug-
gested approach is to have security champions within soft-
ware teams to identify vulnerabilities, disseminate knowl-
edge to their teammates, and escalate issues to the dedicated

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

Workshop on Security Information Workers (WSIW) 2018.

August 12, 2018, Baltimore, MD, USA.

Hongyi Hu and Bryan Eastes
Dropbox, Inc.
hhu,bryane@dropbox.com

security team [17)/20]. This leads to a key question: how can
companies obtain security champions? Hiring existing secu-
rity experts is one obvious possibility, but such experts are
relatively scarce and may not want to be embedded within
a product team [10}11].

An alternative is to train existing developers to become se-
curity champions. How to conduct this training effectively
remains an open question [9,/26]. Our prior research sug-
gests that exposure to a broader variety of vulnerabilities is
a critical component of developing vulnerability-finding ex-
pertise [33]. One common way that experts report gaining
this experience is through hacking competitions known as
Capture-the-Flags (CTFs). While public CTFs have long
been sponsored by companies for recruitment, many orga-
nizations have increasingly begun to hold internal CTFs to
train their own employees [3].

Unfortunately, little is known about the efficacy of inter-
nal CTFs in improving secure-development outcomes. Prior
work has investigated the educational value of CTFs in aca-
demic settings [12}13l|15,/19}/32}/34], finding that CTFs pro-
vide valuable, immediate feedback to learners. To our knowl-
edge, however, there has been no investigation of the effects
of CTF's on secure development practices in a real-world set-
ting: are CTF participants able to translate what they learn
from the experience into more secure product development?

In this paper, we take a first step toward addressing this
question. We describe a pilot mixed-methods study, carried
out in conjunction with an internal CTF at Dropbox, an
enterprise software company with over 1800 employees sup-
porting a 23 MLOC codebase. Our study investigates not
only whether CTF participants perform better in vulnerabil-
ity finding and fixing, but also whether they are more likely
to recognize potential problems during development. We
found several trends which seem to indicate that CTFs have
a positive influence on the way participants consider security.
Specifically, we observed that CTF participants considered
less-intuitive classes of vulnerabilities and were more com-
fortable reaching out to the security team for help. Inter-
estingly, we also observed that the CTF appeared to reduce
potentially harmful overconfidence in participants’ ability to
produce secure code. These pilot results will inform a future
full-scale study in the same environment.

2. DROPBOX’S CAPTURE-THE-FLAG

CTFs are attack-oriented competitions where teams work to
capture a “flag” — some secret — by exploiting a vulnera-
bility in a small target program. Dropbox uses a jeopardy-
style competition, in which challenges are created in several
different categories. Pedagogically, this allows participants
to switch categories if they get stuck, and ascending prob-
lem difficulty within each category also gives participants a



(10 mins: 6 weeks,
2x/week, 1x/day)

(1 week)

Dropbox

Knowledge Capture-the-Flag

Assessment Pre-CTF

Post-CTF
Assessment

Assessment

(60 mins) (60 mins)

Figure 1: Survey procedure. Diary study components are
shown above and knowledge assessment components are be-
low the center timeline. Participants could take part in one
or both of the sub-studies.

gauge for their increasing skill levels.

Challenges were based on the Dropbox codebase, focusing
on vulnerabilities previously seen in that code. This allowed
participants to focus on learning security concepts, rather
than spending effort learning to use unfamiliar programming
languages or APIs. This avoids a common problem with
public CTFs [13}33].

3. METHODOLOGY

To understand how experience finding and exploiting secu-
rity issues in a CTF affects secure development behaviors, we
developed a mixed-methods pilot study around Dropbox’s
CTF. The study, conducted from October 2017 to February
2018, focused on two research questions:

RQ1: Does participation in a CTF improve par-
ticipants’ recognition of security issues?

RQ2: Does participation in a CTF improve par-
ticipants’ ability to prevent security issues?

Recognition of a security issue can occur during the design
phase, while writing code, or after code has already been
written (i.e., identifying a vulnerability during code review
or in deployed code). Even if developers are not able to
fix the issue, any improvement in recognition is still useful,
as many large companies have internal security teams that
can be consulted to help solve these problems. Preventing
security issues can include writing secure code, developing
test plans to ensure the code is protected against a variety of
attacks, and communicating with security experts to design
acceptable solutions.

Due to the complexity involved in answering these questions
and our quasi-experimental setting, we piloted a wide variety
of both constructed and field measures, to maximize both
internal and external validity, described below. Figure
gives an overview of study events. This study was approved
by UMD’s institutional review board.

3.1 Diary study

We used the experience-sampling method (ESM) to inves-
tigate when and how participants considered security when
making changes to the Dropbox codebase. ESM studies,
in which participants complete a series of randomly admin-
istered short surveys over time, support better participant
recall than asking participants to remember past events in
one cumulative survey [6].

For this sub-study, we sent participants a 10-minute survey
after they committed a change to Dropbox’s codebase. To

avoid fatigue, we only sent invitations in response to their
first two commits each week. Each survey asked participants
to answer the following questions regarding their commit:

e What potential problems were considered (i.e., secu-
rity, functionality, or performance).

e Why did you consider these problems (e.g., standard
practice, recommended by a teammate).

e How did you or did you not resolve the issue (e.g., refer-
enced company documents, consulted security team).

To avoid biasing responses, we used deception: we initially
told participants the study’s purpose was to understand gen-
eral software development practices, and we asked distractor
questions about functionality and performance bugs as well
as security. At the end of the six week period, we debriefed
participants regarding the true nature of the study and gave
them the option to have their responses deleted. Only one
participant elected to leave the study after the debrief.

3.2 Knowledge assessment

The knowledge assessment sub-study was structured as a
quasi-controlled experiment. Participants were given one
hour to compete a two-part secure development test. In Part
1, participants were asked to write a secure function that
passed untrusted input to a command-line utility. In Part
2, participants were asked to find and fix four vulnerabilities
that we deliberately added to an isolated, non-production
branch of the Dropbox codebase. These vulnerabilities —
two CSRF bugs, one XSS injection bug, and one authoriza-
tion bug — were similar to real issues previously identified
by the Dropbox security team.

The knowledge assessments were scored by Dropbox secu-
rity experts. In Part 1, participants were awarded one point
for writing functional code that was not vulnerable to com-
mand injection. In Part 2, participants were given one point
for each correctly identified vulnerability and an additional
point for correctly fixing it, for a maximum of 8 points. Par-
ticipants were awarded half a point for identifying where the
vulnerability existed or providing a general idea for fixing it.

We administered two versions of the knowledge assessment:
one prior to the CTF and one six weeks afterward. This
allowed us to measure the within-subjects effect of the CTF,
while accounting for medium-term knowledge retention.

Finally, because of the deception used in the diary study,
we did not initially tell knowledge assessment participants
about UMD’s involvement, to avoid exposing the true pur-
pose of the diary study. Knowledge assessment data was
not shared with UMD researchers until participants were
informed and gave consent to share.

3.3 Security metrics
We also collected secure-development behavioral metrics from
Dropbox for all participants during the study.

Before any commit is added to the Dropbox codebase, a
series of security-specific static analyses are performed to
check for common security anti-patterns and/or changes to
security-sensitive code. A match will trigger a blocking re-
view by an engineer on the Dropbox product security team.
We collect the number of these security checks that par-
ticipant commits fail during the six weeks after the CTF.



While these analyses are simplistic, matches on security anti-
patterns provide a lower-bound approximation for the num-
ber of basic vulnerabilities introduced by each participant.

Additionally, we monitored the number of times that partic-
ipants contacted the security team (via well-known, official
channels) during the six weeks after the CTF. Our goal was
to understand whether the CTF helped participants know
when they should contact security experts, even if they did
not know the exact security implications.

3.4 Recruitment

For the knowledge assessment, we invited all Dropbox CTF
participants (the CTF was advertised to all Dropbox em-
ployees). For the diary study, we invited all employees who
actively contribute to the Dropbox codebase, whether or
not they had participated in the CTF. All recruitment mes-
sages were sent by Dropbox managers, in order to provide
legitimacy and demonstrate leadership approval. To show
appreciation for their time, knowledge assessment partic-
ipants were given Dropbox CTF t-shirts and diary-study
participants were entered in a raffle for five Dropbox jack-
ets. Participants were explicitly permitted to complete all
study tasks during work hours.

3.5 Limitations

For this pilot study, we employed a variety of constructed
and field metrics with different benefits and drawbacks. For
example, our field metrics do not account for the fact that
participants working in very different areas of the codebase
may encounter security-relevant issues with very different
frequencies. While each metric is itself insufficient, we be-
lieve that taken together they provide a reasonable range of
internal and external validity.

The sample size for our pilot was very small, and all results
we report should be considered preliminary at best. We plan
to use these observations, and our experiences conducting
this study, to inform the design of a larger follow-up.

4. PRELIMINARY RESULTS

We next describe the results of our pilot; due to limited sam-
ple size, we do not draw statistical conclusions, but instead
highlight trends to be explored in the follow-on work.

4.1 Diary study

A total of 28 Dropbox employees participated in the diary
study, 12 of whom also competed in the CTF. During the
six-week study, 169 diary responses were submitted.

Overall, security was rarely considered when making func-
tional codebase changes. Participants reported considering
security in only 17 of 124 such changes. However, CTF
participants were slightly more likely to report considering
security (19% of changes) than non-CTF participants (13%).

We also observed differences in CTF participants’ approach
to secure development, as follows.

Logic-related vulnerabilities were considered by all
participants. Figure a) shows the types of vulnerabili-
ties participants reported considering, among commits when
they considered security at all. Both groups considered logic
flaws most often (57% CTF, 60% non-CTF), and authoriza-
tion bugs were also fairly common (42%, 20%). Local file

XSS
CSRF
SQLi
Privacy
Logic (a)

Local File
Disclosure

Auth Bug

Issues

Tool
Teammate
Leading
Factors

(b)

Std. Practice
Similar Exp.

Sensitive Data

Hacker
Teammate
System Doc
Previous Exp. Actions
Later Review (©

External Doc

Expert

|
25 50 75 100

0
Percentage of functionality changes
M Non-CTF I CTF

Figure 2: Percentage of functional changes for each vulner-
ability type considered (a), reason for considering security
(b), and remedial action taken (c) split between CTF and
non-CTF participants. Percentages add to more than 100%
because participants make multiple selections per item.

disclosure, which also relates to system logic, was second-
most-common among non-CTF participants (30%). We hy-
pothesize that these types of logic-based vulnerabilities are
most natural for participants to consider without training.

CTF participants considered vulnerabilities seen in
the CTF. Conversely, CTF participants occasionally re-
ported considering generic vulnerabilities (i.e., not specific to
the implemented functionality) demonstrated in CTF prob-
lems, like SQL injection, CSRF, and XSS (14% each), while
the non-CTF participants did not.

CTF participants adopted an adversarial perspec-
tive. Figure b) shows the distribution of reasons our par-
ticipants considered security. Non-CTF participants consid-
ered security mostly because it was a “standard practice”
(80%) or a teammate recommended it (40%). CTF par-
ticipants similar cited standard practice frequently (71%).
However, CTF participants were more likely than non-CTF
participants to cite adversarial reasons, such as use of sensi-
tive data (42% vs. 20%) or considering what a hacker might
do (29% vs. 10%). We hypothesize that because the CTF
is inherently an offensive exercise, it may teach participants
to think more like an adversary.

No participants thought about security based on a
tool’s output. Several participants had commits automat-



0 °
8
©
o 5
o
s °
(]
P25
5
€ 0
@ 0 °
2
< ° °
0 2000 4000 6000

CTF Scores

Figure 3: Change from pre- to post-CTF knowledge assess-
ment scores versus CTF scores. The mean assessment score
change (blue vertical line) and mean CTF score (red hori-
zontal line) are given for reference.

ically flagged for security review (see Section [3.3)), but none
reported thinking about security due to these checks.

CTF participants reviewed system documentation
more often. Figure c) shows actions taken by partici-
pants to prevent or remedy vulnerabilities. Non-CTF par-
ticipants mostly reached out to their teammates for help
(50%), relied on prior experience (50%), or contacted Drop-
box experts (30%). CTF participants primarily reported
reaching out to experts at Dropbox (29%), reviewing exter-
nal documentation (29%), or relying on previous experience
(29%). We suspect this is because the CTF exposed partic-
ipants to the Dropbox security team and may have incen-
tivized them to explore system documentation to address
unfamiliar problems.

Interestingly, only one respondent, a CTF participant, said
they did not address the security problem. One of the au-
thors inspected the associated commit and saw that the vul-
nerability only had a minor security impact. It is likely the
participant felt a later audit was sufficient. This could indi-
cate that CTF participants better understand security issues
and feel more comfortable making low-risk judgment calls.

All participants were confident in their actions, but
CTF participants were less confident. When asked how
confident they were that the remedial action taken was suf-
ficient, all participants replied either “Very confident” (76%)
or “Confident” (24%). Interestingly, a slightly higher por-
tion of Non-CTF participants reported being “Very confi-
dent” (80% to 71%). As we discuss later, a small reduction
in confidence in the face of complicated security problems
can be considered a beneficial result.

4.2 Knowledge Assessment

We had 20 participants in the knowledge assessment sub-
study, with seven completing both the pre- and post-CTF as-
sessments. The median change in overall score was 1 (mean
1.36). Figure [3| shows each participants’ change in assess-
ment scores compared to their CTF scores. Interestingly,
all our participants who scored above the mean CTF score
(blue vertical line) had an above- mean (red horizontal line)
improvement in their assessment score. The one exception to
this trend earned the maximum score on both assessments.

Participants generally found it easier to write secure code
(88% of all responses were correct), at least when primed to

consider security, than to find and fix security bugs (48%).
Injection flaws were the most difficult to find and fix (mean
score 0.46/2), followed by authorization bugs (0.61/2) and
then CSRF (average score 2.22/4).

4.3 Security Metrics

Among the 35 individuals who completed either of our sub-
studies, we collected 30 flagged, potentially vulnerable com-
mits and six distinct communications with the security team.

Non-CTF participants commits were flagged slightly
more often. Among Non-CTF participants, two of 17 sub-
mitted at least one piece of code flagged as potentially vul-
nerable, while only one of 18 CTF participants’ code was
flagged. This could indicate that the CTF had an impact
on participants’ ability to write secure code. However, due
to the low number of events, further investigation of the as-
sociated commit is required to determine whether this was
a false positive.

CTF participants flagged potential security prob-
lems more often. Four of the six instances where par-
ticipants reached out to the security team were initiated by
CTF participants, and all were examples of pointing out a
potential vulnerability requiring expert review. In contrast,
the two communications initiated by non-CTF participants
were a request to review automatically flagged code and a
request for help setting up an ssh connection respectively.

5. DISCUSSION

Despite small samples that prevent firm conclusions, the pi-
lot study revealed several positive trends that can be eval-
uated in follow-up work. The CTF seems to have some
positive effects in improving security thinking, exposing par-
ticipants to less-intuitive classes of vulnerabilities (such as
injection bugs), and helping participants be more comfort-
able with the security team and with system documentation.
(Prior work suggests that good documentation can improve
security outcomes [2].) Perhaps most importantly, the CTF
seemed to reduce potential overconfidence in the face of com-
plex security issues. Prior work suggests that it can be very
easy for people to overestimate the security of their code [1];
from the perspective of the Dropbox security team, getting
participants to stop, think about security, and ask for help
when needed would in itself be an important achievement.

To validate these trends, we will need to recruit a larger
sample in conjunction with the next Dropbox CTF. As with
many field studies, some of the logistical complexities be-
came apparent only in retrospect. Based on our pilot, we
have identified several potential changes to the study which
will help us maximize recruitment and obtain meaningful
results in a future iteration. One example of this can be
found in the security metrics collected. While code matching
the anti-patterns we tracked could introduce catastrophic
vulnerabilities, in practice, the false-positive rate was high
enough that failing these checks was not likely to actually
indicate insecure coding practices.

6. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful feed-
back; the University of Maryland IRB for their prompt re-
view and management of our ethics review; and Jessica
Chang for contributing to recruiting and organizing the study.



7.
1]

10

11

[13]

REFERENCES

Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim,
M. L. Mazurek, and C. Stransky. Comparing the
usability of cryptographic apis. In Proceedings of the
2017 IEEE Symposium on Security and Privacy, IEEE
S&P, pages 154—-171, May 2017.

Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek,
and C. Stransky. You get where you're looking for:
The impact of information sources on code security. In
Proceedings of the 2017 IEEE Symposium on Security
and Privacy, IEEE S&P, pages 289-305, May 2016.
N. Antunes and M. Vieira. Comparing the
effectiveness of penetration testing and static code
analysis on the detection of sql injection
vulnerabilities in web services. In Proceedings of the
2009 15th IEEE Pacific Rim International Symposium
on Dependable Computing, PRDC ’09, pages 301-306,
Washington, DC, USA, 2009. IEEE Computer Society.
A. Austin and L. Williams. One technique is not
enough: A comparison of vulnerability discovery
techniques. In Proceedings of the 2011 International
Symposium on Empirical Software Engineering and
Measurement, ESEM ’11, pages 97-106, Washington,
DC, USA, 2011. IEEE Computer Society.

D. Baca, B. Carlsson, K. Petersen, and L. Lundberg.
Improving software security with static automated
code analysis in an industry setting. Software:
Practice and Ezperience, 43(3):259-279, 2013.

L. F. Barrett and D. J. Barrett. An introduction to
computerized experience sampling in psychology.
Social Science Computer Review, 19(2):175-185, 2001.
W. Baziuk. BNR/NORTEL: path to improve product
quality, reliability and customer satisfaction. In Sizth
International Symposium on Software Reliability
Engineering, ISSRE 1995, Toulouse, France, October
24-27, 1995, pages 256-262, 1995.

B. Bevilacqua. How facebook?s annual Thacktober?
campaign promotes cybersecurity to employees, 2017.
(Accessed 05-02-2018).

S. G. Campbell. Assessing aptitude for cyber
operations: Identifying potential candidates for the
u.s. air force. Technical report, Center for Advanced
Study of Language, June 2017.

Center for Cyber Safety and Education. Global
information security workforce study. Technical
report, Center for Cyber Safety and Education,
Clearwater, FL, 2017.

Center for Strategic and International Studies.
Hacking the skills shortage: A study of the
international shortage in cybersecurity skills.
Technical report, McAfee, Santa Clara, CA, 2015.

P. Chapman, J. Burket, and D. Brumley. Picoctf: A
game-based computer security competition for high
school students. In Proc. of the 1st USENIX Summit
on Gaming, Games, and Gamification in Security
Education, 3GSE 14, San Diego, CA, 2014. USENIX
Association.

K. Chung and J. Cohen. Learning obstacles in the
capture the flag model. In Proceedings of the 1st
USENIX Summit on Gaming, Games, and
Gamification in Security Education, 3GSE 14, San
Diego, CA, 2014. USENIX Association.

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

(23]

24]

25]

[26]

27]

28]

A. Doupé, M. Cova, and G. Vigna. Why johnny can’t
pentest: An analysis of black-box web vulnerability
scanners. In Proceedings of the Tth International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA’10, pages
111-131, Berlin, Heidelberg, 2010. Springer-Verlag.

C. Eagle. Computer security competitions: Expanding
educational outcomes. IEEE Security Privacy,
11(4):69-71, July 2013.

A. Edmundson, B. Holtkamp, E. Rivera, M. Finifter,
A. Mettler, and D. Wagner. An empirical study on the
effectiveness of security code review. In Proceedings of
the 5th International Conference on Engineering
Secure Software and Systems, ESSoS’13, pages
197-212, Berlin, Heidelberg, 2013. Springer-Verlag.

J. Haney and W. Lutters. Skills and characteristics of
successful cybersecurity advocates. In Proceedings of
the 13th Symposium on Usable Privacy and Security,
SOUPS ’17, Santa Clara, CA, 2017. USENIX
Association.

M. M. Lehman. Programs, life cycles, and laws of
software evolution. Proc. of the IEEE,
68(9):1060-1076, Sept 1980.

L. McDaniel, E. Talvi, and B. Hay. Capture the flag as
cyber security introduction. In Proc. of the 49th
Hawaii International Conference on System Sciences,
HICSS ’16, pages 54795486, Jan 2016.

G. McGraw, S. Migues, and B. Chess. Software
security framework | bsimm, 2009. (Accessed
05-22-2018).

G. McGraw and J. Steven. Software [in]security:
Comparing apples, oranges, and aardvarks (or, all
static analysis tools are not created equal, 2011.
(Accessed 02-26-2017).

K. Olmstead and A. Smith. Americans and
cybersecurity, 2017. (Accessed 07-15-2017).

O. Pieczul, S. Foley, and M. E. Zurko.
Developer-centered security and the symmetry of
ignorance. In Proceedings of the 2017 New Security
Paradigms Workshop, NSPW 2017, pages 46-56, New
York, NY, USA, 2017. ACM.

M. P. Robillard and R. J. Walker. An Introduction to
Recommendation Systems in Software Engineering,
pages 1-11. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

N. Rutar, C. B. Almazan, and J. S. Foster. A
comparison of bug finding tools for java. In Proceedings
of the 15th International Symposium on Software
Reliability Engineering, ISSRE ’04, pages 245256,
Washington, DC, USA, 2004. IEEE Computer Society.
L. D. Saner. Profiling cyber operations abilities:
Improving job placement in the u.s. navy cyber
workforce. Technical report, Center for Advanced
Study of Language, June 2017.

Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls,
R. Wang, C. Kruegel, and G. Vigna. Rise of the hacrs:
Augmenting autonomous cyber reasoning systems
with human assistance. In Proc. of the 24th ACM
SIGSAC Conference on Computer and
Communications Security, CCS ’17. ACM, 2017.

M. Soni. Defect prevention: reducing costs and
enhancing quality. IBM:iSizSigma.com, 19, 2006.



[29]

[30]

[31]

L. Suto. Analyzing the effectiveness and coverage of
web application security scanners. Technical report,
BeyondTrust, Inc, 2007.

L. Suto. Analyzing the accuracy and time costs of web
application security scanners. Technical report,
BeyondTrust, Inc, 2010.

G. Tassey. The economic impacts of inadequate
infrastructure for software testing. National Institute
of Standards and Technology, RTI Project, 7007(011),
2002.

G. Vigna, K. Borgolte, J. Corbetta, A. Doupé,

Y. Fratantonio, L. Invernizzi, D. Kirat, and

Y. Shoshitaishvili. Ten years of ictf: The good, the
bad, and the ugly. In Proc. of the 1st USENIX
Summit on Gaming, Games, and Gamification in

(33]

(34]

35]

Security Education, 3GSE 14, San Diego, CA, 2014.
USENIX Association.

D. Votipka, R. Stevens, E. M. Redmiles, J. Hu, and
M. L. Mazurek. Hackers vs. testers: A comparison of
software vulnerability discovery processes. Proc. of the
IEFEE, 2018.

J. Werther, M. Zhivich, T. Leek, and N. Zeldovich.
Experiences in cyber security education: The mit
lincoln laboratory capture-the-flag exercise. In Proc. of
the 4th Conference on Cyber Security Fxperimentation
and Test, CSET’11, pages 12-12, Berkeley, CA, USA,
2011. USENIX Association.

M. Zhivich and R. K. Cunningham. The real cost of
software errors. IEEE Security & Privacy, 7(2), 2009.



	Introduction
	Dropbox's Capture-the-Flag
	Methodology
	Diary study
	Knowledge assessment
	Security metrics
	Recruitment
	Limitations

	Preliminary Results
	Diary study
	Knowledge Assessment
	Security Metrics

	Discussion
	Acknowledgments
	References

